Organelle and translocatable forms of glyoxysomal malate dehydrogenase. The effect of the N-terminal presequence.

نویسندگان

  • Bryan Cox
  • Ma May Chit
  • Todd Weaver
  • Christine Gietl
  • Jaclyn Bailey
  • Ellis Bell
  • Leonard Banaszak
چکیده

Many organelle enzymes coded for by nuclear genes have N-terminal sequences, which directs them into the organelle (precursor) and are removed upon import (mature). The experiments described below characterize the differences between the precursor and mature forms of watermelon glyoxysomal malate dehydrogenase. Using recombinant protein methods, the precursor (p-gMDH) and mature (gMDH) forms were purified to homogeneity using Ni2+-NTA affinity chromatography. Gel filtration and dynamic light scattering have shown both gMDH and p-gMDH to be dimers in solution with p-gMDH having a correspondingly higher molecular weight. p-gMDH also exhibited a smaller translational diffusion coefficient (D(t)) at temperatures between 4 and 32 degrees C resulting from the extra amino acids on the N-terminal. Differential scanning calorimetry described marked differences in the unfolding properties of the two proteins with p-gMDH showing additional temperature dependent transitions. In addition, some differences were found in the steady state kinetic constants and the pH dependence of the K(m) for oxaloacetate. Both the organelle-precursor and the mature form of this glyoxysomal enzyme were crystallized under identical conditions. The crystal structure of p-gMDH, the first structure of a cleavable and translocatable protein, was solved to a resolution of 2.55 A. GMDH is the first glyoxysomal MDH structure and was solved to a resolution of 2.50 A. A comparison of the two structures shows that there are few visible tertiary or quaternary structural differences between corresponding elements of p-gMDH, gMDH and other MDHs. Maps from both the mature and translocatable proteins lack significant electron density prior to G44. While no portion of the translocation sequences from either monomer in the biological dimer was visible, all of the other solution properties indicated measurable effects of the additional residues at the N-terminal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organelle and translocatable forms of glyoxysomal malate dehydrogenase

doi:10.1111/j.1742-4658.2004.04475.x Many organelle enzymes coded for by nuclear genes have N-terminal sequences, which directs them into the organelle (precursor) and are removed upon import (mature). The experiments described below characterize the differences between the precursor and mature forms of watermelon glyoxysomal malate dehydrogenase. Using recombinant protein methods, the precurso...

متن کامل

Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha.

We have studied the significance of the N-terminal presequence of watermelon (Citrullus vulgaris) glyoxysomal malate dehydrogenase [gMDH; (S)-malate:NAD+ oxidoreductase; EC 1.1.1.37] in microbody targeting. The yeast Hansenula polymorpha was used as heterologous host for the in vivo expression of various genetically altered watermelon MDH genes, whose protein products were localized by immunocy...

متن کامل

A cysteine endopeptidase isolated from castor bean endosperm microbodies processes the glyoxysomal malate dehydrogenase precursor protein.

A plant cysteine endopeptidase with a molecular mass of 35 kD was purified from microbodies of germinating castor bean (Ricinus communis) endosperm by virtue of its capacity to specifically process the glyoxysomal malate dehydrogenase precursor protein to the mature subunit in vitro. Processing of the glyoxysomal malate dehydrogenase precursor occurs sequentially in three steps, the first inter...

متن کامل

Partitioning of malate dehydrogenase isoenzymes into glyoxysomes, mitochondria, and chloroplasts.

Malate dehydrogenase isoenzymes catalyzing the oxidation of malate to oxaloacetate are highly active enzymes in mitochondria, in peroxisomes, in chloroplasts, and in the cytosol. Determination of the primary structure of the isoenzymes has disclosed that they are encoded in different nuclear genes. All three organelle-targeted malate dehydrogenases are synthesized with an amino terminal extensi...

متن کامل

Glyoxysomal malate dehydrogenase from watermelon is synthesized with an amino-terminal transit peptide.

The isolation and sequence of a cDNA clone encoding the complete glyoxysomal malate dehydrogenase [gMDH; (S)-malate:NAD+ oxidoreductase, EC 1.1.1.37] of watermelon cotyledons are presented. Partial cDNA clones were synthesized in a three part strategy, taking advantage of the polymerase chain reaction technology with oligonucleotides based on directly determined amino acid sequences. Subsequent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The FEBS journal

دوره 272 3  شماره 

صفحات  -

تاریخ انتشار 2005